
Math 1B, Fall 2008

Recursive Sequence Example

Define the sequence {an} by

a1 = 1
an+1 = 3

√
an + 6.

We will prove that {an} converges, and find the limit. This kind of sequence,
where an+1 is defined in terms of an, is called recursively defined. We’ve done
a couple of problems where we could only find the limit of a recursively defined
sequence after we already knew that the sequence converged (for example, see
problem 3 on Section 108 Quiz 4 Solutions). So here is the outline we will follow:

(1) Prove that {an} converges, via (a),(b) and (c):

(a) Prove that {an} is bounded.

(b) Prove that {an} is monotonic.

(c) Use the Monotonic Sequence Theorem.

(2) Find limn→∞ an.

Start with (1a). We will prove {an} is bounded, by induction. In particular,
we will show that 0 ≤ an ≤ 2 for all n ≥ 1.

[In a problem, you will most likely be given these bounds (0 and 2). If you
are not, then you’ll have to try to guess them.]

Here is the proof that 0 ≤ an ≤ 2 for n ≥ 1. First, the base case n = 1.
Since a1 = 1, we have 0 ≤ a1 ≤ 2. Next, the inductive step k =⇒ k + 1. So
assume 0 ≤ ak ≤ 2 and we will prove 0 ≤ ak+1 ≤ 2. Since ak is positive,
ak+1 = 3

√
an + 6 must also be positive. So ak+1 ≥ 0. Also,

ak+1 = 3
√

ak + 6
≤ 3
√

2 + 6 (because ak ≤ 2, and 3
√ is increasing)

= 2.

So ak+1 ≤ 2. We have shown 0 ≤ ak+1 ≤ 2, which finishes the inductive proof
that 0 ≤ an ≤ 2 for all n ≥ 1.

Now we do (1b) and show that an is monotonic. First, some general thoughts
on this part of the problem. Define f(x) = 3

√
x + 6, so f(an) = an+1. As a rule,
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if f is increasing on the interval of possible values of {an} (0 ≤ x ≤ 2 in this
case), then the sequence {an} is monotonic. It is tempting to think that f
increasing means that {an} is increasing, but that is not the case! If f is in-
creasing, then to see if the sequence is increasing or decreasing, just see if you
have a1 < a2 or a1 > a2.

In this case, the sequence should be increasing. We now prove that an <
an+1 for all n ≥ 1, by induction. First, the base case n = 1. We can find
a2 = 3

√
7 > 1 = a1, so a1 < a2. Now the inductive step k =⇒ k + 1. So we

assume that ak < ak+1, and prove that ak+1 < ak+2. By our definition of f
above, f(ak) = ak+1 and f(ak+1) = ak+2. We now check that f is increasing
for 0 ≤ x ≤ 2, the possible values of an (by step 1a). To do this, differentiate
to get

f ′(x) =
1
3

(x + 6)−2/3

≥ 0 for 0 ≤ x ≤ 2.

Since f is increasing, and ak < ak+1, we get f(ak) < f(ak+1) (the idea is that
if f is increasing, then “bigger inputs give bigger outputs”). But this means
ak+1 < ak+2, which finishes the proof by induction that {an} is increasing.

We have shown that {an} is bounded and increasing, so by the Monotone
Sequence Theorem {an} converges. This was (1c).

We now turn to step (2), which is finding the limit of {an}. Let L =
limn→∞ an. Then we also have L = limn→∞ an+1 (essentially, all we have done
is throw out the first element of the sequence). So starting with

an+1 = 3
√

an + 6

and taking limits of both sides gives

L = lim
n→∞

an+1

= lim
n→∞

3
√

an + 6

= 3

√
lim

n→∞
an + 6 (limit rules/continuity)

= 3
√

L + 6.

So L = 3
√

L + 6. Cubing both sides, rearranging, and then factoring gives

0 = L3 − L− 6 = (L− 2)(L2 + 2L + 3).

So L is root of the polynomial (x − 2)(x2 + 2x + 3). Since x2 + 2x + 3 has no
real roots, we must have L = 2. In conclusion,

lim
n→∞

an = 2.
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So this is a pretty long example, and you wouldn’t have to write so much if
you did it. But here’s a checklist of important steps

• Prove by induction that an is bounded, p ≤ an ≤ q for all n ≥ 1. You may
have to use some algebra to get this to work, depending on the problem.

• Define f(x) so that f(an) = an+1.

• Make sure f(x) is increasing (i.e. f ′(x) ≥ 0) for p ≤ x ≤ q.

• Prove that {an} is increasing (or decreasing), by induction. To choose
between increasing or decreasing, just check whether a1 < a2 or vice
versa. This proof will always be pretty much the same as the one in the
example above.

• Conclude that {an} converges, and let L = limn→∞ an.

• Set f(L) = L, and solve for L. If there is more than one such L, use your
knowledge of the sequence to eliminate all but one of them. For example,
if an is always positive, you can eliminate negative choices. Similarly, if
a1 = 1 and an is increasing, the limit cannot be 1/2.
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